

## The Rare Isotope Accelerator (RIA) Research & Development Workshop

#### **DOE Nuclear Physics Division**

August 26-28, 2003 • Bethesda, Maryland

# CHARACTERIZATION OF SECONDARY RADIATION FROM PRE-CONCEPTUAL HIGH POWER TARGETS

Reginald M. Ronningen
National Superconducting Cyclotron Laboratory
Michigan State University



## Why Important!

- Characterization of Secondary Radiation is a High R&D Priority:
  - Support Facility Characterization
  - Bulk Shielding Design
  - Range of R&D activities
    - •ISOL targets
    - Fragmentation targets
    - Radiation-hard magnets



## **Characterization of Secondary Radiation**

### - Recommend as High Priority!

- Power is ~10 to ~100 higher than delivered to existing similar targets
- Power dissipation will lead to significant:
  - Prompt Secondary Radiation
  - Radioisotope Inventory
  - Activation
  - Heating ...
- Necessary to characterize in support of:
  - Civil engineering
  - Bulk shielding (biological doses ...)
  - Environmental impacts
  - Facility classification
  - R&D of Target areas, Stripper regions
  - Magnet designs
  - Materials (dose, activation, maintenance *etc.*)
  - Remote handling



## **MSU's Current RIA Layout**





## **LINAC Stripping Regions**

- Controlled Losses: 2 Stripping targets required for A>Xe
- For 400 kW beam power:
  - 1st stripper power density about 3 kW/mm<sup>3</sup>
    - ~ 10A MeV
  - 2<sup>nd</sup> stripper power density about 2 kW/mm<sup>3</sup>
    - ~ 100A MeV
- Stripper design must be supported
- Remote handling, local shielding must be investigated



## **Nuclear Safety and Hazard Analysis**

Need to Answer Early-On:

#### Is RIA a Nuclear Facility or Accelerator Facility?

- Areas to study:
  - Hazardous material inventory
  - Potential for release
  - Other attendant hazards
- If a Nuclear Facility, What Category?
  - ISOL Targets are most likely the decision driver
     need realistic designs to study and help
     promote target area R&D



## **Preliminary Conclusions on Classification**

- Several groups working on this issue:
  - MSU
  - LLNL (Larry Ahle and Jason Boles, this Workshop)
  - ANL
- Storage area, target, hot cell, pre-separator areas:
   Cat. 2
- The rest of the facility: Cat. 3



## **Characterizing Secondary Radiation**

- Clear Need to use Transport Codes to Simulate the Radiation Environments in Target Areas and Around Beam Dumps for Both Light and Heavy Ions
- **Light Ions (A < 5)** 
  - Monte Carlo transport codes available
  - Other developed tools for simulations available
    - e.g. ORNL's Activation Analysis Sequence codes
- Heavy Ions
  - Transport codes still under development and not generally available
  - Benchmarking will be necessary



## **Angular Distributions of Neutrons**

- Characterization of radiation will be important for R&D
  - Character of neutron spectra different
  - Critical data does not exist







#### • PHITS calculation:

Hiroshi Iwase Ph.D. thesis Tohoku Univ. (2003)

#### • Data

Y. Iwata et al. Phys. Rev. C 64, 054609(2001)





## PHITS: <sup>3</sup>He at 730A MeV on UC Target+Cu Stop





## **Fast Fragmentation Target Area Issues**

- For 400 kW target: 50 100 kW from fragments!
  - Where will these fragments go?
  - Where will the primary beam go?
  - What magnet designs will work?
- Significant R&D effort is necessary to simulate radiation environment of target area
- Simulations will need heavy ion transport codes



## **Complexity After the Fragmentation Target!**

HIGAN STATE MICHIGAN STATE MICHIGAN





## **Radiation Damage**

## Radiation Damage by Fast Neutrons Not Well Studied!

- Most data are for:
  - •neutrons having energies thermal to ~14 MeV
  - photons
- Simple dose estimates (neglecting HE cascade neutrons) give:
  - < 8 year SC coil life
    - Preliminary Monte Carlo analysis gives 4 years
  - Unacceptably Short Coil Lifetimes!



## Support Radiation-Hardened Magnet R&D

- Need to understand radiation environment in ISOL, fragmentation target and other magnetic device areas:
  - Will drive magnet design
  - •Need data, code development and benchmarking for DPA analysis of damage to magnet components
  - Residual radiation determines servicing scenarios



## **Summary and Conclusions**

- Support for radiation characterization is vital!
  - Facility classification:
    - •Inventories of radioisotopes and attending hazards must be studied carefully and early-on.
  - Support RIA R&D:
    - •Yields and angular distributions of secondary neutrons and other radiation from heavy ion reactions must be known from data or simulations.
    - New codes necessary for simulations.
      - Benchmarking will be necessary.
      - Need to have the necessary data sets.



## **BACKUP SLIDES**



### PHITS: <sup>3</sup>He at 730A MeV on UC Target+Cu Stop





### PHITS: <sup>3</sup>He at 730A MeV on UC Target+Cu Stop

